
On Computing Straight Skeletons by Means
of Kinetic Triangulations

Peter Palfrader Martin Held Stefan Huber

University of Salzburg

European Symposium on Algorithms 2012



Problem

Given a planar, straight line graph, construct the straight
skeleton.



Defining Straight Skeletons

• Introduced by Aichholzer et al. in 1995.
• A skeleton consisting exclusively of straight line segments.
• Defined by a wavefront propagation process: The straight

skeleton is the set of loci that are traced out by wavefront
vertices.



Defining Straight Skeletons

• Introduced by Aichholzer et al. in 1995.
• A skeleton consisting exclusively of straight line segments.
• Defined by a wavefront propagation process: The straight

skeleton is the set of loci that are traced out by wavefront
vertices.



Defining Straight Skeletons

• Introduced by Aichholzer et al. in 1995.
• A skeleton consisting exclusively of straight line segments.
• Defined by a wavefront propagation process: The straight

skeleton is the set of loci that are traced out by wavefront
vertices.



Wavefront propagation

During this wavefront propagation, the wavefront topology
changes:

• Split events: a wavefront vertex crashes into an oncoming
wavefront edge.

• Edge events: a wavefront edge vanishes.



Defining Straight Skeletons

Extend from simple polygons to planar straight line graphs:



Defining Straight Skeletons

Extend from simple polygons to planar straight line graphs:



Applications

Tool path generation Roof construction
"

Cut-and-fold

and more . . .



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Triangulation based Construction

• Keep a triangulation of the area not yet swept over by the
wavefront [Aichholzer, Aurenhammer 1998].

• Edge and Split events are witnessed by collapsing
triangles⇒ Priority Queue.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Flip events

• Not all collapsing triangles result in a change of the
wavefront.

• These cases need special handling nevertheless. They are
flip events.



Our contribution

• We have implemented this algorithm, filling in a few gaps in
the algorithm, including issues that arise from not
assuming general position.

• We have run extensive tests using this code, more on that
in a bit.



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Triangulating the input

• Triangulate the convex hull.
• Unfortuantely the convex hull changes with time, and it

matters.

• We need to update the triangulation at some point before
this happens, but how?



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?

• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?

• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?

• ⇒ infinitely fast moving vertex.



Infinitely fast moving vertices

• During an edge event, two wavefront vertices collide and a
new moving vertex gets launched.

• Its direction and speed is dictated by the incident
wavefronts.

• But what if these edges are parallel?
• ⇒ infinitely fast moving vertex.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Flip event loops

• Without general position, this algorithm can end up in
infinite loops.

• This is not a result of inexact floating point operatons but
can also happen with exact arithmetic.



Detecting flip event loops

• Keep a history of flip events 〈e1,e2, . . .〉, where each
ei = (ti ,∆i).

• This history can be cleared when we encounter an edge or
split event.

• If we encounter a flip event a second time, we may be in a
flip event loop.



Handling flip event loops

Brief outline:
• ea [eb] is the first [last] occurance of the duplicate event.
• Events between ea and eb happen at the same time.
• The set of triangles with events between ea and eb make

up one or more edge-connected components.
• The component that contains the triangle of ea is a polygon

P which has collapsed to a straight line.
• Undo the events of the triangles in P, and retriangulate P

and its neighborhood.

v1 vk

v3

v2 v4 v5

e

ve

C(e)

∆e

• This approach also is applicable to kinetic triangulations in
other algorithms.



Number of flip events

• Three points moving at constant speed become collinear
at most twice.

• With n vertices, there are
(n

3

)
∈ O(n3) combinatorially

different triangles.
• O(n3) is the best known upper bound on the number of flip

events!
• No input is known that results in more than quadratically

many flip events.
• It turns out that for practical data the number of flip events

is very linear.



Performance observations

theoretical worst case practical

runtime space runtime space

E&E1 O(n17/11+ε) O(n17/11+ε) N/A

CGAL2 O(n2 log n) O(n2) O(n2 log n) O(n2)

Bone3 O(n2 log n) O(n) O(n log n) O(n)

Surfer4 O(n3 log n) O(n) O(n log n) O(n)

1Eppstein and Erickson, 1999
2F. Cacciola, 2004
3Huber and Held, 2010
4this, based on Aichholzer and Aurenhammer, 1998



Runtime tests

0.01

0.1

1

10

100

1000

103 104 105 106

ru
nt
im
e
(s
ec
on
ds
)

Surfer

BoneCGAL

10MB

100MB

1GB

103 104 105 106

m
em

or
y
us
ag
e

Surfer

BoneCGAL

Runtime and memory usage behavior of CGAL, Bone, and
Surfer for inputs of different sizes.
Bone and Surfer use their IEEE 754 double precision backend.



Summary

• We have implemented Aichholzer and Aurenhammer’s
algorithm from 1998, filling in details in the algorithm
description. We fixed real problems that arise in the
absence of general position.

• Our approach to handling flip events has wider
applications.

• The implementation runs in O(n log n) time for real-world
data. The number of flip events is linear in practice.

• It is industrial-strength, having been tested on tens of
thousands of inputs.

• It is the fastest straight skeleton construction code to date,
handling millions of vertices in mere seconds.



Questions

Thank you for your attention.

Questions


	Introduction
	Constructing the Straight Skeleton
	Implementation and Caveats
	Test Results

